BI usage in Banking
Business Intelligence tools are being used by banks for historical analysis, performance budgeting, business performance analytics, employee performance measurement, executive dashboards, marketing and sales automation, product innovation, customer profitability, regulatory compliance and risk management. Let us take a look at some of these applications.
Historical Analysis (time-series)
Banks analyse their historical performance over time to be able to plan for the future. The key performance indicators include deposits, credit, profit, income, expenses; number of accounts, branches, employees etc. Absolute figures and growth rates (both in absolute and percentage terms) are required for this analysis. In addition to time dimension, which requires a granularity of years, half year, quarter, month and week; other critical dimensions are those of control structure (zones, regions, branches), geography (countries, states, districts, towns), area (rural, semi-urban, urban, metro), and products (time, savings, current, loan, overdrafts, cash credit). Income could be broken down in interest, treasury, and other income; while various break-ups for expenses are also possible. Other possible dimensions are customer types or segments.
Derived indicators such as profitability, business per employee, product profitability etc are also evaluated over time.
The existence of a number of business critical dimensions over which the same transaction data could be analysed, makes this a fit case for multi-dimensional databases (hyper cube or ‘the cube’).
Though it is a major requirement, it hardly receives the attention of BI vendors. For sometime, these requirements were bundled as Executive Information Systems (EIS). But the safe, quantifiable world of computers runs up against a wall of unquantifiable abstractions, value judgments and opinions when designing an EIS system. For one, no two executives are alike. And how information is analyzed, interpreted and acted upon is a very subjective exercise. No surprise, therefore, that BI vendor shifted their focus to terra firma of customer relationship management (CRM) which continues to be the centre of their sales pitch to banks today. Even risk management comes a close second.
Performance Budgeting
Indian banks adopted performance budgeting as a management tool in the sixties. The success of the tool depended on historical data on which the current performance levels could be realistically based, and periodic reviews to take corrective actions if there were large variances between budgeted and actual figures. Historical analysis and performance budgeting used roughly the same indicators and the same dimensions, except for resource allocation to achieve the budgeted targets.
Customer Relationship Management (CRM)
As stated earlier, this application is at the centre stage of BI in banking. It is difficult to assess whether it is driven by technology or business. Traditional or conservative banking business models of Indian banking industry relied heavily on personal relationships that the bankers of yesteryears had with their customers. To that extent, ‘relationship’ in the present version of CRM is a misnomer. Let us look into the application of CRM in banking, a little more closely.
CRM is an industry term for the set of methodologies and tools that help an enterprise manage customer relationships in an organized way. It includes all business processes in sales, marketing, and service that touch the customer. With CRM software tools, a bank might build a database about its customers that describes relationships in sufficient detail so that management, salespeople, people providing service, and even the customer can access information, match customer needs with product plans and offerings, remind customers of service requirements, check payment histories, and so on.
A CRM implementation consists of the following steps:
Find customers
Get to know them
Communicate with them
Ensure they get what they want (not what the bank offers)
Retain them regardless of profitability
Make them profitable through cross-sell and up-sell
Covert them into influencers
Strive continuously to increase their lifetime value for the bank.
The most crucial and also the most daunting task before banks is to create an enterprise wide repository with ‘clean’ data of the existing customers. It is well established that the cost of acquiring a new customer is far greater than that involved in retaining an existing one. Shifting the focus of the information from accounts tied to a branch, to unique customer identities requires a massive onetime effort. The task involves creating a unique customer identification number and removing the duplicates across products and branches. Technology can help here but only in a limited way.
The transition from a product-oriented business model to a customer-oriented one is not an easy task for the banking industry. It is true of all the banks, Indian or otherwise. It is also true of all Indian banks; private, public, or foreign; and of whatever generation.
A few instances are worth mention here. Head of retail business of a technology savvy new generation private sector bank admits on conditions of anonymity, that there is no 360 degree view of a customer available in his bank. It treats credit card applications from its existing customers in the same way as it does for new customers. A retail loan application does not take into account the existing relationship of the customer with the bank, his credit history in respect of earlier loans or deposit account relationship. And this bank is one of the pioneers in setting up a data warehouse, and a world class CRM solution.
Most CRM solutions in Indian banks are, in reality, sales automation solutions. New customer acquisition takes priority over retention. That leads to the hypothesis that it is BI vendors that are driving CRM models in banks rather than banks themselves. Product silos have moved from manual ledgers to digital records. There is not a single implemented model of ‘relationship’ in Indian banking industry as of today.
Risk Management
Theoretically, banks transform, distribute and trade financial risks in their role of a financial intermediary. However, the risk management discipline as it is known today has its roots in statistical techniques, which require historical data, both internal and external. Statistical models for measurement of various risks such as credit, market, and interest rate depend on the availability, accuracy and amount of historical data for their predictive power.
Though most of this data gets generated out of banking transactions, it needs to be extracted, cleansed and transformed before it can be used in risk measurement models. Most of the risk management in Indian banking industry is regulatordriven.
Regulatory compliance
Regulatory compliance requirements in the banking industry worldwide are on the increase. Basel II, anti-money laundering, Sarbanes-Oxley, and Sebi clause 49 are a few examples. All these regulatory requirements share one common feature – they are data-intensive. Some of these requirements are now quite stringent about the quality of reporting, making the chief executive officer (CEO) and the chief information officer (CIO) personally liable for the correctness of reports.
Regulatory reporting, therefore, requires a properly-audited data collection and collation process.
However, all these BI applications cater to the needs of the top management in banks. But, line managers have a different set of BI requirements, which differ from those of the top management. These requirements constitute ‘Operational BI’.
Comments
Post a Comment